VAPORIZATION OF MATTER THROUGH INTERACTION
WITH INTENSE ENERGY FLUXES

V. N. Kondrat'ev UDC 532.529.5/6

Surface and volume mechanisms for the evaporation of matter through inferaction with in-
tense radiation fluxes are discussed. Calculations are performed which assume the exis-
tence of both fluctuation and steady-state bubbles in a material and which include super-
heating of the material ahead of the inward-travelling vaporization wave. The dependence
of the incident energy flux density on the average thickness of the energy deposition zone
for which the trangition from surface to volume vaporization occurs is obtained for alu-
minum, copper, and lead.

1. There are two different points of view with respect to the vaporization of material through the
incidence of high radiation fluxes, for example, laser radiation on a metal, A number of authors [1~3] as-
sume the material is vaporized from the surface while others [4-6] suppose that volume vaporization in
the heated zone dominates. Under conditions resembling the experimental conditions in [6], volume va~
porization certainly is the predominant mechanism. The point is the heated layer was thick in those ex-
periments and the temperature of the material was high (close to critical). With expansion of the material
surface tensionis reduced and heterophase fluctuations are considerably favored.

In the general case, unfortunately, quantitative evaluations of the limits of one or the other vapori-
zation mechanism is made difficult by the absence of reliable information about a whole series of factors,
about the rate of bubble growth in liquid metals, for example, etc. Experimental data [1, 8], as correctly
noted in [3], does not yet permit one to answer this question tnambiguously since the differences in the
parameters measured in these experiments are small for different assumptions about the vaporization mech-
anism. An attempt is made below to evaluate the region of dominance of one or the other vaporization
mechanism,

2, In the interaction of radiation in the optical range at comparatively low flux densities, even with
opaque materials, the vapor layer which is formed is transparent (at least, for small thicknesses of such
a layer) [1-3]. Because of the vaporization, radiation has a chance to penetrate into deeper layers of the
material, to heat them, and to give rise to vaporization, etc. — a vaporization wave is created. Radiation
absorption and phase transition occur in a rather thin layer, and the discussion can be confined to the plane
problem Since the main portion of the energy is consumed in vaporization in this mode, one can estimate
the wave velocity and the mass consumption m from the following relation:

m = pD = ¢ (1 — K,)/Q 2.1)

where p; is the density of the condensed solid, D is the velocity of the vaporization wave front, q,’ is the
constant radiation flux density incident on the solid, K;. is the average reflection coefficient for this ra-
diation, and Q is the heat of vaporization per gram of material, In the derivation of Eq. (2.1), it was as~
sumed the temperatures of the cold material fed into vaporization wave can be neglected in comparizon
with phase trangition temperature Ty. The enthalpy of the condensed absolutely cold material is assumed
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to be (—Q), and the enthalpy of the gaseous absolutely cold material is assumed to be zero. In addition,
for simplicity, the enthalpy h of the vapor and its kinetic energy 1/:guz, where u is mass velocity, are
neglected in comparison with Q.

Equation (2.1) for q,.0(1-Ky) =5 MW/cm? and Q=10 kJ/g (Al) gives pyD=5+ 10? g/cm’-sec and D=2
m/sec. Thus the vaporization wave moves relative to the material ahead of it at an essentially subsonic
velocity. Such a quasitationary propagation mode, of course, is established only for a certain time after
the initiation of vaporization, We do not consider here those properties which may be associated with
nonstationary states of motion of the vaporization wave. We limit the discussion to the quasistationary
problem,

Let a constant radiation flux qr(’ incident on a solid decrease exponentially with depth as given by

g =0 (1 — K,) exp [— (z — 2,)/l,] (2.2)
where gy is the radiation flux density at the depth x, xy is the rightward-moving vaporization boundary, and
1, is the characteristic thickness of the energy deposition zone in the solid. We assume for simplicity that
reflection occurs at the surface of the solid.

A similar vaporization wave can also be propagated through a material through the interaction
with it of other forms of energy; for example, this can occur through energy deposition from Joule
heating caused by the passage of an electric current created by the penetration of a powerful mag-
netic field into the material [7]. A sharp decrease of conductivity in vapors leads to their "trans-
parency" to a magnetic field. The boundary of the region of energy deposition is displaced along with
the material being vaporized, The depth of penetration of the field in copper is 3°1072 cm at a time of the
order of 1 psec. This depth is considerably greater than the depth of penetration in metals for radiation
in the optical range. In other cases (for example, through interaction with an intense electron beam), prop-
agation of a vaporization zone is also possible although it is nonstationary and screened by the vapor layer.
In this case, calculations relative to the stationary problem may be used for an evaluation with the under-
standing qro means the energy flux density penetrating to the vaporization zone., Finally, and in the case
of optical radiation also, the quantity !, may markedly exceed the characteristic depth in metals; as an
example, consider the semitransparent materials used in the experiment [6].

The energy flux density is determined through ordinary thermal conductivity by the relation

4 = —KoT/ox @2.3)

where K is the coefficient of thermal conductivity and T is the temperature of the solid. The energy equa-
tion takes the form

ar a
Poln g+ =0 G=ar+g,) @4

where cp is the heat capacity at constant pressure, t is time, and q is the total thermal flux density.

We shall seek a solution of Eq. (2.4) in the form T=Tx-Dt). Using the boundary condition T — 0 when
q -0, we obtain from Eq. (2.4)

q = pocpDT 2.5)

Note that the radiation flux density q,° at the boundary of the solid including partial reflection must
satisfy the condition

¢° (1 = K,) = 0,D (T + Q) (2.6)
From Eqgs. (2.2), (2.3), (2.5), and (2.6), we obtain

K or T
._mw—i—exp[—-(zfxv)/lo]:—m 2.7)

We reduce Eq. (2.7) to dimensionless form by introducing T*=T/T, and x =x/1, :
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The solution of Eq. (2.8) has the form

Z \ -
028 . ot .
| 1) = gposn (= ) oo oo (3 — 1)) 10— e
M T This equation indicates that there is always some
, — superheating of the condensed solid (T/T, >1) ahead of the

inwardly travelling vaporization wave because of thermal
conductivity.

The physical significance of this is that vaporization
of material through surface vaporization occurs because of

) ~ 2l the influx of heat by ordinary thermal conductivity from

7 some region where the radiation energy is deposited (va-

Fig. 1 porization occurs because of the supply of heat from within).

Thus the distribution of temperature with depth in units of

1y is shown in Fig, 1 for a=0.25,
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It is clear that superheating increases as the value of the parameter B decreases, or as the value of
dy, which appears in 8, increases, for example,

The dependence of the maximum superheating Tynax/T, on the parameter 6/, is shown in Fig, 2
where O is the width of the zone of heating through thermal conductivity, The quantity 6 and the resi-
dence time t of particles of the condensed solid in the heating zone can be estimated from the obvious re-
lations A

8,=Vaty, t,=8./D, 8 =a/D

Here, a is the thermal diffusivity of the material (@® = K/cpfy)-

We draw attention to the fact the thickness 0 of the heated layer and also the particle residence time
in the heated layer increase as the radiation flux density q,° and the velocity D decrease. While o = 1073~
10~* cm and tr = 10~1-10-2 usec for a velocity D = 10 m/sec (for dp’ (1 —Kyp) = 30 MW/cmz) and for a ther-
mal diffusivity of 0.1-1 ¢m?/sec, the thickness 67 increases to 1072-10"% c¢m and the residence time to
10-100 psec for a velocity of 1 m/sec, i.e., for a flux density q,°(1—Ky) = 3 MW/cm?,

It is clear from Fig, 2 that for that for I; = const, the maximum superheating of the material in-
creases when there is a reduction in the coefficient of thermal conductivity and consequently in 6. The
residence time ty g for particles in the region of the vaporization wave is defined as the ratio between the
width 6T, q of the heated zone, i.e., the larger of the quantities I, and T, and the velocity D of the vaporiza-
tion wave. This velocity, is turn, can be determined from Eq. (2.6), given Qe

We consider the heating of the liquid (we neglect the heat of fusion in comparison with the heat of
vaporization) at a constant pressure equal to the phase transition pressure py(Ty). Calculations were made
for aluminum, copper, and lead. The required physical constants were taken from the appropriate hand-
books, for example, the py(Tv) relationship was represented in the form

lgp,=A4A —BIT,

where A and B are constants, and was extrapolated to the critical point which for lack of other information
was defined as pg = Poc,2/27 [6] where ¢, is the velocity of sound for the material in the normal state. The
value of the critical pressure p, for lead was taken from [8]. In the boiling point range at pressures from
normal to critical, values of the parameter « for Al, Cu, and Pb vary within the following limits, respec-
tively: 0.18-0.56, 0.18-0.57, and 0.26-0.39.

The value of the reflection coefficient Ky was taken to be 0.52, 0.50, and 0.66 respectively for Al, Cu,
and Pb.

644



¢ Tz The value of the coefficient of thermal conductivity K was taken
‘5 from [9, 10] with K decreasing abruptly by approximately a factor of
7 2 in the transition through the fusion temperature,
\ . The pressure py, was determined from the relation
2 v ‘
\ o=075 w=04 P’ = C (2,10)
~— |/
h 7 7 7 v 6l ¢ where C is a constant in the stationary case. Equation (2.10) can be

considered as an interpolation of the experimental data. It agrees
with practically all theoretical calculations (based on any of the the-
ories). The quantity C was taken to be 4, 3, and 18 dyn-sec/J for
Al, Cu, and Pb, respectively.

By increasing the liquid temperature T = Ty + AT, where AT is the absolute superheating of the ma-
terial, and by maintaining a constant pressure p = Py, the pressure inside vapor bubbles will be increased.
The vapor pressure is only a function of the temperature as was shown in [11],

Under these conditions, a bubble of radius

re=26/Ap (Ap=p{T)—p,(T) 2.11)

will be in unstable equilibrium with the liquid, Here, 1 is the critical radius at which a bubble continues
to grow spontaneously.

3. On the basis of the theory of heterophase fluctuations {11, 12], one can estimate the rate of for-
mation I of supercritical bubbles (quclei) per second and per cubic centimeter of liquid:

_ 26 ® dnr s
I="No I/W exp (— ) exp (— 45552) @.h
Here, N, is the number of molecules per cm?, ¢ is the coefficient of surface tension, myp is the proton
mass, M is molecular weight, w is the heat of vaporization per molecule, k is the Boltzmann constant, and
T = Ty + AT is the temperature of the material., Following [13], the quantities o and w were taken in the
form )

: T,—T
°=°°(Tf—rv>’

o= (7:57) @2

where 0, and w, correspond to the boiling point values at normal pressure.

An actual liquid has solid particle impurities, inhomogeneities, etc. and also a certain steady-state
size distribution of bubbles per cm?, Ng(r). We shall attempt to determine the effect on vaporization of the
difference between an actual liquid (in this case, a liquid metal) and an ideally pure liquid. M. G. Sirotyuk
[14] measured the relation Ng°(r) for the number of bubbles per cm?® of distilled water having a radius
greater than r, Between the functions Ng(r) and NS"’(r) there is obviously the following relation:

Ne(r) = S N, (r)dr

The experimental relations Ng°(r) and Ng(r) can be approximated within an order of magnitude by the
functions '

10-10

2r2

N = (3.3)

'Ns"(r):

where the value of the constant appearing in Egs. (3.3) plays a minor role.

According to the theory of Ya. I. Frenkel' [11], dependence of the number of bubbles per cm? in the
neighborhood of the boiling point, Nf (r), is of a probabilistic nature:
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Ny (r) = Ngexp (— 4mr2/3k_T) (3.4

Unfortunately, the functions Ng’(r) and Ng(r) have not been de-
/ﬂ\\\ , ] termined for metals, and we therefore agsume Egs. (3.3) are also
valid for the molten metals mentioned above, Note that the air sat-
\\ uration of water in the experiments [14] was 0.025 ecm3/ml, and this
may be even greater for metals, for example, 3.2 cm®/ml in cast
iron [15].
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We define a condition for the comparability of surface and
volume vaporization by means of the equality of the area s, on which
the radiation is incident and the total bubble area sy, made up of the
area s, of bubbles growing from already existing bubbles and of the
area s, of bubbles formed, during the residence time t in the heating
wave:

$p= 51 (8) + 83 () = §° N, t)s(t)dr+S S I(r, tydrs(t)d
e o .5)
s(t) = 4nBE (1), R(t) = ro()+ Sv(t) dt

Here, s(t) and R(t) are the area and radius of a bubble, r,(T(t)), Ap(T (), 0(T(t)), and T(t) are taken
from Egs, (2.11), (3.2), and (2.9), the equality x=Dt is used, N(r, t) is taken from Egs. (3.3) or (3.4) de-
pending on the kind of bubble, and I(r, t) is determined from Eq, (3.1) in the case of fluctuations,

The quantity v(t) appearing in Eq. (3.5) is the rate of radial growth of a bubble, In first approximation
and neglecting viscosity effects, v can be set equal to the maximum Rayleigh velocity

v(t) = V¥,Ap (T_(t))—/‘p.o \ (3.6)

Note that in Eq. (3.5) we do not consider boiling at centers of vapor formation — depressions in the
surface of heat-emitting walls which are filled with gas or vapor — since we are considering a plane case
without the presence of a wall or of hydrophobic particles.

As an estimate, one can assume the bubble area 8¢ in the case of fluctuation theory will be

3.7
SI = 4n (UtT,q)2I tT,an.q ( )

Here we make the following assumptions relative to Eq. (3.5):
T (t) = Tm&)h re == ‘0a U(t) = v(Tmax)1 I=1 (Tmax), = tT,q

and neglect the term corresponding to the growth of already existing bubbles.
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On the other hand, the second term in Eq. (3.5) goes to zero when only steady-state bubbles are
present, and for the same assumptions their area sg is

5y = 4 (vtp, P Ndr, g O, =N, (r,) (3.8)

Satisfaction of the condition for equality of areas mentioned above makes it possible to determine
the dependence of the incident flux density q;. on the characteristic thickness J; of the energy deposition
zone, The resultant curves obtained respectively for Al, Cu (dashed curve), and Pb are shown in Figs, 3a
and 3b,

In Fig. 3aand subsequent figures, curves denoting fluctuation bubbles are marked with the number 1
and those related to steady-state bubbles are marked 2.

For both assumptions (there are only fluctuation bubbles or there are only steady-~state bubbles), it
is clear that the 7, for which the transition from surface boiling (region I) to volume boiling (region II) oc-
curs decreases as dy increases. Note that for steady-state bubbles this relation falls below that for fluc-
tuation bubbles over a considerable range of q;.. This is evidence that the values of {; for which the tran-
sition from surface to volume boiling occurs for given values of qy are reduced when steady-state bubbles
are present,

It is obvious that under the natural assumption both types of bubbles are present a generalized rela-
tion g (fy) will correspond to the lower portion of the curves at a given value of q;; i.e., for example, in
aluminum fluctuation bubbles will play the leading role in the transition from surface to volume vaporiza-
tion when 1,< 6,0 - 1075, cm, steady-state bubbles when 6.0 ° 107 em = h=12- 1072 ¢m, once again fluc-
tuation bubbles when 1.2 <1072 cm < lp=5.0° 107 cm, and volume vaporization occurs in any case when
1, >5.0-107% em,

As an illustration, we point out that in the interaction of aluminum with laser radiation having a free
path 1;=10"% c¢m, it is found that the transition from surface to volume vaporization occurs with fluctuation
bubbles upon exceeding ;. =5 - 10° W/cm? and upon exceeding q2,= 6.0 *10? when it is assumed steady-state
bubbles are present [14]. When both types of bubbles are present, the transition between the two vaporiza-
tion mechanisms will be accomplished at the lower value ¢5.=5.0 *10° W/cm?, i.e,, fluctuation bubbles will
be the determining factor in this case. Note that the q°, scale of values in Fig, 3a and bcorresponds to sur-
face temperature values obtained from Eq. (2.10) and the pV(Tv) relation. Thus q7.=5 +10° W/em? corre-
sponds to the initiation of boiling in Al at p=1 atm (T, =2621°K) and g5=7+ 10? W/cm? to the critical point
(To=14,200°K).

Maximum values of the superheating (Tmax/ T,) obtained for the condifion s;= sy, according to fluc-
tuation theory and under the assumption steady-state bubbles are present are shown in Fig. 4 as a function
of the surface temperature T, for Al, It is clear that these curves are very different, particularly for flux
densities equal to, or somewhat greater than, the radiation flux density producing vaporization. The indi-
cated values are Tmax/T(): 3.0 and 1,1, respectively, from fluctuation theory and under the assumption
gteady-state bubbles are present. As d;. increases, these curves approach each other and even cross. As
indicated above, this is evidence of a shift in the dominant type of bubble in the transition from surface
to volume vaporization, As T, increases to T, the maximum superheating Tmax/To ends to unity because
o —0 and w—0. Assuming the existence of both types of bubbles, the generalized superheating curve will
be represented by the lower portions of the curves in Fig. 4.

Figure 4 shows superheating values T/T, as a function of Ty, calculated from fluctuation theory [11,
12], which are sufficient to produce critical bubble formation rates I equal to 10%°, 10!, and 10710 sec-1-
cm-3 in molten Al under steady-state conditions. For example, it is clear that a small change in T/T,
leads to an order-of-magnitude change in I, This fact was used in the evaluation of sp.

Thus the presence of steady-state bubbles in many ways facilitates the transition from surface to
volume vaporization as shown by calculations, limited by the scope of the agsumptions, of the interaction
between semitransparent materials and laser radiation (with the thickness of the energy deposition zone
much greater than the average range of optical radiation in metals, [; ~ 1074-107% cm). However, for typ-
ical laser values of 7; for metals, surface vaporization should occur first followed by volume vaporization
as g5 increases with the transition at 5°10% 3+10% and 10" W/cm? for Al, Cu, and Pb, respectively; in
this case, the presence of steady-state bubbles obviously has little effect on the boundary between the pre-
dominant vaporization mechanisms,
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