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Surface and volume m e c h a n i s m s  for  the evaporat ion of m a t t e r  through in teract ion with in-  
tense  radia t ion f luxes a re  d iscussed .  Calculations a r e  p e r f o r m e d  which a s s u m e  the e x i s -  
tence of both fluctuation and s t eady - s t a t e  bubbles  in a m a t e r i a l  and which include s u p e r -  
heating of the m a t e r i a l  ahead of the inward- t rave l l ing  vapor iza t ion  wave.  The dependence 
of the incident ene rgy  flux densi ty  on the ave rage  th ickness  of the energy  deposit ion zone 
for  which the t rans i t ion  f rom sur face  to volume vapor iza t ion  o c c u r s  is  obtained for  a lu-  
minum, copper ,  and lead.  

1. The re  a re  two different  points of view with r e s p e c t  to the vapor iza t ion  of m a t e r i a l  through the 
incidence of high radia t ion fluxes,  for  example ,  l a s e r  radia t ion on a me ta l .  A number  of authors  [1-3] a s -  
sume the m a t e r i a l  is  vapor ized  f rom the sur face  while o the r s  [4-6] suppose that volume vapor iza t ion  in 
the heated zone dominates .  Under conditions r e sembl ing  the exper imen ta l  conditions in [6], volume v a -  
por iza t ion  ce r ta in ly  is the predominant  mechan i sm.  The point is  the heated l aye r  was thick in those ex-  
pe r imen t s  and the t e m p e r a t u r e  of the m a t e r i a l  was  high (close to cr i t ica l ) .  With expansion of the m a t e r i a l  
sur face  tens ion is reduced  and he te rophase  f luctuations a r e  cons iderab ly  favored .  

In the genera l  case ,  unfortunately,  quanti tat ive evaluat ions of the l imi t s  of one or  the other  v a p o r i -  
zation m e c h a n i s m  is  made difficult by the absence  of re l iab le  informat ion  about a whole s e r i e s  of f ac to r s ,  
about the r a t e  of bubble growth in liquid me ta l s ,  for  example ,  e tc .  Exper imenta l  data  [1, 3], as  c o r r e c t l y  
noted in [3], does not yet  p e r m i t  one to answer  this quest ion unambiguously  since the d i f fe rences  in the 
p a r a m e t e r s  m e a s u r e d  in these  expe r imen t s  a re  smal l  for  different  assumpt ions  about the vapor iza t ion  m e c h -  
an i sm.  An at tempt  is made  below to evaluate  the reg ion  of dominance of one or  the other  vapor iza t ion  
m e c h a n i s m .  

2. In the in terac t ion  of radia t ion  in the optical  range  at compara t ive ly  low flux densi t ies ,  even with 
opaque m a t e r i a l s ,  the vapo r  l ayer  which is  fo rmed  is  t r a n s p a r e n t  (at leas t ,  for  sma l l  t h i cknesses  of such 
a layer)  [1-3]. Because  of the vaporizat ion,  radia t ion has  a chance to pene t ra te  into deepe r  l a y e r s  of the 
ma te r i a l ,  to hea t  them,  and to give r i s e  to vapor iza t ion,  etc .  - a vapor iza t ion  wave i s  c r ea t ed .  Radiation 
absorpt ion and phase  t rans i t ion  occur  in a r a t h e r  thin l ayer ,  and the d iscuss ion can be confined to the plane 
p rob lem Since the main  port ion of the ene rgy  is  consumed in vapor iza t ion  in th is  mode,  one can es t ima te  
the wave ve loc i ty  and the m a s s  consumption lh f r o m  the following relat ion: 

rh = po D = q~ (1 -- Kr)/Q (2.1) 

where  P0 is  the densi ty of the condensed solid, D is  the veloci ty  of the vapor iza t ion  wave front,  qr  ~ is  the 
constant  radia t ion flux densi ty  incident on the solid, K r i s  the ave rage  re f lec t ion  coefficient  for  this  r a -  
diation, and Q is  the heat  of vapor iza t ion  pe r  g r a m  of m a t e r i a l .  In the der iva t ion  of Eq. (2.1), i t  was  a s -  
sumed the t e m p e r a t u r e s  of the cold m a t e r i a l  fed into vapor iza t ion  wave can be neglected in compar izon  
with phase  t rans i t ion  t e m p e r a t u r e  T v. The enthalpy of the condensed absolutely cold m a t e r i a l  is a s sumed  
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to be ( -Q) ,  and the enthalpy of the gaseous  absolute ly  cold m a t e r i a l  is  a s s u m e d  to be ze ro .  In addition, 
for  s impl ic i ty ,  the enthalpy h of the vapor  and i ts  kinetic energy  1/2u2, where  u is m a s s  veloci ty,  a re  
neglected in compar i son  with Q. 

Equation (2.1) for  qr~ = 5 MW/cm 2 and Q= 10 k J / g  (A1) gives po D= 5.102 g / c m 2 - s e c  and D= 2 
m / s e c .  Thus the vapor iza t ion  wave moves  re la t ive  to the m a t e r i a l  ahead of i t  at an essen t ia l ly  subsonic 
veloci ty .  Such a quas i ta t ionary  propagat ion  mode,  of course ,  is  es tab l i shed  only for  a ce r t a in  t ime  af ter  
the ini t iat ion of vapor iza t ion .  We do not cons ider  he re  those p r o p e r t i e s  which may  be assoc ia ted  with 
nons ta t ionary  s ta tes  of motion of the vapor iza t ion  wave.  We l imi t  the d iscuss ion  to the quas i s ta t ionary  
p rob l em.  

Let  a constant  rad ia t ion  flux qr  ~ incident  on a solid dec rea se  exponential ly with depth as  given by 

q~ = qr ~ (l --  K~) exp [-- (x - -  xv)/l o] (2.2) 

where  qr  is  the radia t ion  flux densi ty  at the depth x, x v i s  the r igh tward -moving  vapor iza t ion  boundary,  and 
l 0 is  the c h a r a c t e r i s t i c  th ickness  of the energy  deposit ion zone in the solid.  We as sume  for  s impl ic i ty  that 
re f lec t ion  occu r s  at  the sur face  of the solid. 

A s i m i l a r  vapor iza t ion  wave can a lso  be p ropaga ted  through a m a t e r i a l  through the in teract ion 
with it of o ther  f o r m s  of energy;  for  example ,  this  can occur  through ene rgy  deposit ion f r o m  Joule 
heating caused  by the p a s s a g e  of an e lec t r i c  cu r ren t  c rea ted  by the penet ra t ion  of a powerful  m a g -  
netic f ield into the m a t e r i a l  [7]. A sha rp  dec r ea se  of conductivity in vapor s  leads  to the i r  " t r a n s -  
parency"  to a magne t ic  field.  The boundary of the region of ene rgy  deposit ion is displaced along with 
the m a t e r i a l  being vapor ized .  The depth of penet ra t ion  of the field in copper  is  3 " 10 -2 cm at  a t ime  of the 
o r d e r  of 1 # s e c .  This  depth is  cons ide rab ly  g r e a t e r  than the depth of penet ra t ion  in meta l s  for  radia t ion 
in the opt ical  range .  In other  c a se s  (for example ,  through in te rac t ion  with an intense e lec t ron  beam),  p rop-  
agation of a vapor iza t ion  zone is  also poss ib le  although it is  nons ta t ionary  and sc reened  by the vapor  l aye r .  
L~ this case ,  ca lcula t ions  re la t ive  to the s ta t ionary  p rob l em may  be used  for  an evaluation with the unde r -  
standing qr  ~ means  the ene rgy  flux densi ty  penet ra t ing  to the vapor iza t ion  zone. Finally, and in the c a s e  
of opt ical  rad ia t ion  also,  the quantity l 0 may  marked ly  exceed the c h a r a c t e r i s t i c  depth in meta ls ;  as  an 
example ,  cons ider  the s e m i t r a n s p a r e n t  m a t e r i a l s  used  in the expe r imen t  [6]. 

The ene rgy  flux densi ty  is  de te rmined  through o rd ina ry  t h e r m a l  conductivity by  the re la t ion  

qT = - -KOT/Ox (2.3) 

where  K is  the coeff ic ient  of t h e r m a l  conductivity and T is the t e m p e r a t u r e  of the solid.  The ene rgy  equa-  
t ion t akes  the f o r m  

OT . Oq 
~)oCp -~- -  -]- ~ = 0 (q = qT -~ qr ) (2.4) 

where  Cp is  the heat  capaci ty  at  constant  p r e s s u r e ,  t is  t ime,  and q is  the total  t h e r m a l  flux densi ty .  

We shal l  seek  a solution of Eq. (2.4) in the f o r m  T = T ( x - D t ) .  Using the boundary condition T - . 0 w h e n  
q - - 0 ,  we obtain f r o m  Eq. (2.4) 

q = 9ocpD T (2.5) 

Note that  the radia t ion  flux densi ty  qr  ~ at  the boundary of the solid including par t ia l  re f lec t ion  mus t  
sa t i s fy  the condition 

q~~ (i " Kr) = poD (cpTo + Q) (2.6) 

F r o m  Eqs.  (2.2), (2.3), (2.5), and (2.6), we obtain 

K OT T 
~ i + exp [--  (x - -  xv) / lo] = (2.7) qr ( - - K r )  Ox T + Q / %  

We reduce  Eq. (2.7) to d imens ion less  f o r m  by introducing T * = T / T  0 and x* = x / l  o : 
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The solution of Eq. (2.8) has  the fo rm 

i 
l + q / c p T  (2 .S )  

This  equatio n indica tes  that the re  is  always some 
superheat ing of the condensed solid (T/T 0 > 1) ahead of the 
inwardly t rave l l ing  vapor iza t ion  wave because  of t h e r m a l  
conductivity.  

The physica l  s ignif icance of th is  i s  that  vapor iza t ion  
of m a t e r i a l  through sur face  vapor iza t ion  occurs  because  of 
the influx of heat  by o rd ina ry  t h e r m a l  conductivity f rom 
some  region where  the radia t ion energy  i s  d e p o s i t e d ( v a -  
por iza t ion occurs  because  of the supply of heat  f r o m  within) . 
Thus the d is t r ibut ion  of t e m p e r a t u r e  with depth in units  of 
l 0 is  shown in Fig. 1 for  5= 0.25. 

It i s  c l ea r  that  superheat ing i n c r e a s e s  as the value of the p a r a m e t e r  fl d e c r e a s e s ,  or  as the value of 
q~,  which appea r s  in t ,  i n c r e a s e s ,  for  example .  

The dependence of the m a x i m u m  superheat ing T m a x / T  0 on the p a r a m e t e r  5 T / l  o is  shown in Fig. 2 
where  5 T is the width of the zone of heating through t h e r m a l  conductivity.  The quantity 5 T and the r e s i -  
dence t ime  t T of pa r t i c l e s  of the condensed solid in the heating zone can be e s t ima ted  f rom the obvious r e -  
lations 

~;r----]/a-~T, tT = S T / D ,  8 T - - a / D  

Here ,  a i s  the t h e r m a l  diffusivity of the m a t e r i a l  (a 2 = K/CpP0). 

We draw attention to the fact  the th ickness  5 of thehea ted  l ayer  and also the par t i c le  r e s idence  t ime  
In the heated l aye r  i nc rea se  as the radia t ion flux densi ty  qr  ~ and the ve loc i ty  D d e c r e a s e .  While 6 T = 10 -3- 
10 -4 c m  and t T = 10-1-10 -2 psec for  a ve loci ty  D = 10 m/ sec  (for q r ~  = 30 MW/cm 2) and for  a t h e r -  
mal  diffusivity of 0.1-1 cm2/ sec ,  the th ickness  5T i n c r e a s e s  to 10-2-10 -3 cm and the res idence  t ime  to 
10-100 psec for  a ve loci ty  of 1 m / s e c ,  i .e . ,  for  a flux density q r ~  = 3 MW/cm 2. 

It  is  c l ea r  f r o m  Fig. 2 that  for  that  for  l 0 = const,  the m a x i m u m  superheat ing of the m a t e r i a l  in -  
c r e a s e s  when the re  is  a reduct ion in the coefficient  of t h e r m a l  conductivity and consequently in 6 T.  The 
re s idence  t ime  tT, q for  pa r t i c l e s  in the r eg ion  of the vapor iza t ion  wave is  defined as  the ra t io  between the 
width 6T,q of the heated zone, i .e . ,  the l a r g e r  of the quanti t ies  l 0 and ST, and the veloci ty  D of the vapo r i za -  
tion wave.  This  velocity,  is  turn,  can be de te rmined  f rom Eq. (2.6), given q~.  

We consider  the heating of the liquid (we neglect  the heat  of fusion in compar i son  with the heat  of 
vaporizat ion)  at a constant  p r e s s u r e  equal to the phase  t rans i t ion  p r e s s u r e  Pv(Tv). Calculat ions were  made 
for  aluminum, copper ,  and lead. The requ i red  physica l  constants  we re  taken f r o m  the appropr ia te  hand-  
books,  for  example ,  the pv(Tv) re la t ionship  was r e p r e s e n t e d  in the f o r m  

lgp~ = A - -  B /  T,, 

where  A and B a re  constants ,  and was  ex t rapola ted  to the c r i t i ca l  point which for  lack of o ther  informat ion 
was defined as Pc = P0c02/27  [6] where  c o is  the veloci ty  of sound for  the m a t e r i a l  i n t h e  no rma l  s ta te .  The 
value of the c r i t i ca l  p r e s s u r e  Pc for  lead was taken f r o m  [8]. In the boiling point range  at p r e s s u r e s  f r o m  
no rma l  to c r i t ica l ,  v a l u e s  of the p a r a m e t e r  ~ for  A1, Cu, and Pb v a r y  within the following l imits ,  r e s p e c -  
t ively: 0.18-0.56, 0.18-0.57, and 0.26-0.39. 

The Value of the ref lec t ion  coeff icient  Kr  was taken to be 0.52, 0.50, and 0.66 r e spec t i ve ly  for  A1, Cu, 
and Pb. 
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The value of the coefficient of thermal  conductivity K was taken 
f rom [9, 10] with K decreas ing  abruptly by approximately a factor  of 
2 in the t ransi t ion through the fusion t empera tu re .  

The p re s su re  Pv was determined f rom the relat ion 

pv/qr ~ : C (2.10) 

where C is a constant in the s ta t ionary case.  Equation (2.10) can be 
considered as an interpolation of the experimental  data. It agrees  
with prac t ica l ly  all theoret ical  calculat ions (based on any of the the-  
or ies) .  The quantity C was taken to be 4, 3, and 18 d y n - s e c / J  for 
A1, Cu, and Pb, respect ively .  

By increas ing the liquid t empera tu re  T = T v + AT, where AT is the absolute superheating of the m a -  
ter ial ,  and by maintaining a constant p r e s su re  p = Pv, the p re s su re  inside vapor  bubbles will be increased.  
The vapor  p res su re  is only a hmction of the tempera ture  as was shown in [11]. 

Under these conditions, a bubble of radius 

rc = 2o / A p  (ap = p (T) - -  Pv (T:)) (2.11) 

will be in unstable equil ibrinm with the liquid. Here, r c is the cr i t ical  radius at which a bubble continues 
to grow spontaneously.  

3. On the bas is  of the theory  of heterophase fluctuations [11, 12], one can es t imate  the rate of fo r -  
mat-ion I of superer i t i ca l  bubbles (nuclei) per second and per  cubic cent imeter  of liquid: 

(3.1) 

Here, N O is the number  of molecules  per  cm 3, a is the coefficient of surface tension, mp is the proton 
mass ,  M is molecular  weight, w is the heat of vaporizat ion per molecule,  k is the Boltzmaan constant, and 
T = T v + AT is the t empera tu re  of the mater ia l .  Following [13], the quantities a and w were taken in the 
form 

/ T e - - T  \ / T e - - T  \ 
= o0 = ( 3 . 2 )  

where a0 and w 0 cor respond  to the boiling point values at normal  p r e s su re .  

An actual liquid has solid par t ic le  impuri t ies ,  inhomogeneities,  etc. and also a cer ta in  s teady-s ta te  
size distribution of bubbles per cm 3, Ns(r). We shall attempt to determine the effect on vaporizat ion of the 
difference between an actual liquid (in this case,  a liquid metal) and an ideally pure liquid. M. G. Sirotyuk 
[14] measured  the relat ion Ns~ for the number of bubbles per  cm 3 of distil led water  having a radius 
g rea te r  than r .  Between the functions Ns(r) and Ns~ there  is obviously the following relation: 

N s  ~ (r) = i N, (r) dr  
r 

The experimental  re la t ions Ns ~ (r) and N s (r) can be approximated within an order  of magnitude by the 
functions 

tO-Xo t0-x0 
N~ Q(r) ---- 2 - - ~ - '  N s ( r )  : r8 ( 3 . 3 )  

where the  value of the constant appearing in Eqs. (3.3) plays a minor  role .  

According to the theory  of Ya. I. Frenkel '  [ l i ] ,  dependence of the number  of bubbles per cm 3 in the 
neighborhood of the boiling point, Nf (r), is of a probabil ist ic nature:  
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N t (r) : N o exp (--  4n~r~/3kT) (3.4) 

Unfor tunate ly ,  the funct ions  Ns ~ (r) and Ns (r) have not been  de -  
t e r m i n e d  fo r  me t a l s ,  and we t h e r e f o r e  a s s u m e  Eqs .  (3.3) a r e  a l so  
val id  for  the mol t en  m e t a l s  men t ioned  above,  Note tha t  the a i r  s a t -  
u r a t i on  of  w a t e r  in the e x p e r i m e n t s  [14] was  0.025 cm3/ml ,  and this  
m a y  be even  g r e a t e r  fo r  me t a l s ,  fo r  example ,  3.2 c m 3 / m l  in c a s t  
i ron  [15] .  

We def ine  a condi t ion for  the c o m p a r a b i l i t y  of su r f ace  and 
vo lume vapo r i za t i on  by  m e a n s  of  the equal i ty  of the a r e a  s o on which 
the r ad ia t ion  is  incident  and the to ta l  bubble  a r e a  Sb, made  up of  the 
a r e a  s I o f  bubbles  g rowing  f r o m  a l r eady  exis t ing  bubbles  and of  the 
a r e a  s 2 of  bubbles  fo rmed ,  dur ing  the r e s i d e n c e  t ime  t in the hea t ing  
w ave �9 

co t co 

sb = sl(t)-~ s~(t)= I N(r, t)s(t)dr-~ I ~- I(r, t)drs(t)dt 
o ~c~t ) ~ (o (3.5) 

t 

(t) = 4nR 2 (t), R (t) = rc (t) + I v (t) $ dt 
0 

Here,  s(t) and R(t) a r e  the a r e a  and r ad iu s  o f  a bubble,  rc(T(t)) ,  Ap(T(t)), a(T(t)), andT(t )  a re  taken 
f r o m  Eqs .  (2.11), (3.2), and (2.9), the equal i ty  x = Dt i s  used ,  N(r, t) i s  taken f r o m  Eqs .  (3.3) o r  (3.4) d e -  
pending on the kind of  bubble,  and I ( r ,  t) i s  d e t e r m i n e d  f r o m  Eq, (3.1) in the c a s e  of  f luc tua t ions .  

The quant i ty  v(t) appea r ing  in Eq. (3.5) i s  the r a t e  o f  r ad i a l  g rowth  of  a bubble.  In f i r s t  app rox ima t ion  
and neglec t ing  v i s c o s i t y  e f fec ts ,  v can  be  se t  equal  to the m a x i m u m  Rayle igh  ve loc i t y  

v it) = V ~/3ap (r (0) / p0 (3.6) 

Note that  in Eq. (3.5) we do not  c o n s i d e r  boi l ing  at c e n t e r s  o f  vapo r  f o r m a t i o n  - d e p r e s s i o n s  in the 
su r face  of  h e a t - e m i t t i n g  wal l s  which a r e  f i l led with gas  o r  v a p o r  - s ince  we a r e  cons ide r i ng  a plane case  
without  the p r e s e n c e  of  a wal l  o r  of  hydrophobic  p a r t i c l e s .  

As  an e s t ima te ,  one can  a s s u m e  the bubble a r e a  ~ in  the c a s e  of  f luctuat ion t h e o r y  wil l  be 

s[ = 4~ (vtr.a)2I tw.~Sr,r 

Here  we m a k e  the fol lowing a s s u m p t i o n s  r e l a t i ve  to  Eq. (3.5): 

(3.7) 

T(t) = Tmax, rc = 0, v(t) = v (Tmax), I = I (Tmax), t ~- tr.q 

and neglec t  the t e r m  c o r r e s p o n d i n g  to the g rowth  of  a l r e ady  exis t ing  bubbles .  
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On the other hand, the second t e r m  in Eq. (3.5) goes to zero  when only s teady-sta te  bubbles are 
present ,  and for the same assumptions their  a rea  s s is 

s,  = 4~  (vtT, ~)~ N~Sr  q (N = N s (re)) (3.8) 

Satisfaction of the condition for  equality of a reas  mentioned above makes it possible to determine 
the dependence of the incident flux density q~. on the charac te r i s t i c  thickness l 0 of the energy deposition 
zone. The resul tant  curves  obtained respec t ive ly  for A1, Cu (dashed curve),  and Pb are shown in Figs.  3a 
and 3b. 

In Fig. 3aand subsequent f igures,  curves  denoting fluctuation bubbles are  marked  with the number 1 
and those re la ted to s teady-s ta te  bubbles are marked 2. 

For  both assumptions (there are  only fluctuation bubbles or  there  are  only s teady-sta te  bubbles), it 
is c lea r  that the l 0 for which the t ransi t ion f rom surface boiling (region I) to volume boiling (region II) oc -  
curs  dec reases  as qr  i nc reases .  Note that for  s teady-s ta te  bubbles this re la t ion falls below that for f luc-  

o tuation bubbles over  a considerable range of qr" This is evidence that the values of l 0 for which the t r a n -  
sition f rom surface to volume boiling occurs  for  given values of q~ are  reduced when s teady-sta te  bubbles 
are  present .  

It is  obvious that under  the natural  assumption both types of bubbles are  present  a general ized r e l a -  
tion qr(10) will cor respond  to the lower portion of the curves  at a given value of q~; i.e., for  example, in 
aluminum fluctuation bubbles will play the leading role in the t ransi t ion f rom surface to volume vapor iza -  
tion when l 0 < 6.0 �9 10-5; cm, s teady-s ta te  bubbles when 6.0 " 10 -5 cm ~ l 0 -< 1.2 �9 10 -2 cm, once again fluc- 
tuation bubbles when 1 .2 .10 -2 cm < 10 -< 5~ ~ 10 -1 cm, and volume vaporizat ion occurs  in any case when 
l 0 > 5 .0 .10  -i  cm~ 

As an i l lustration, we point out that in the interaction of aluminum with l ase r  radiation having a free 
path l 0 = 10 -~ cm, it is found that the t ransi t ion f rom surface to volume vaporizat ion occurs  with fluctuation 

o o 0 bubbles upon exceeding qr  = 5 �9 109 W/em 2 and upon exceeding qr  = 6 . .  109 when it is  assumed s teady-s ta te  
bubbles are  present  [14]~ When both types of bubbles are  present ,  the t ransi t ion between the two vapor iza -  
tion mechan isms  will be accomplished at the lower value q~. = 5.0 �9 109 W / c m  2, i.e., fluctuation bubbles will 
be the determining factor  in this case .  Note that the q~ scale of values in Fig. 3a and b cor responds  to su r -  
face t empera tu re  values obtained f rom Eq. (2.10) and t~e Pv(Tv) relat ion.  Thus q~. = 5 �9 105 W/cm 2 c o r r e -  
sponds to the initiation of boiling in A1 at p= 1 aim (Tv=2621~ and q~= 7 �9 109 W / c m  2 to the cr i t ica l  point 
(T c = 14,200OK). 

Maximum values of the superheating (Tmax/T 0) obtained for the condition s o = s b according to f luc- 
tuation theory  and under the assumption s teady-s ta te  bubbles are  present  are  shown in Fig. 4 as a function 
of the surface t empera tu re  T O for A1. It is  c lear  that these curves  are  ve ry  different, par t icular ly  for flux 
densit ies equal to, or somewhat g rea t e r  than, the radiat ion flux densi ty producing vaporizat ion.  The indi- 
cated values are  Tmax /T  0 = 3.0 and 1.1, respect ively ,  f rom fluctuation theory  and under the assumption 
s teady-s ta te  bubbles are  present .  As qr  increases ,  these curves  approach each other and even c ros s .  As 
indicated above, this is  evidence of a shift in the dominant type of bubble in the t ransi t ion f rom surface 
to volume vaporizat ion.  As T O inc reases  to T c, the maximum superheating Tmax /T  0 ends to unity because 

~ 0  and w-*0 .  Assuming the existence of both types of bubbles, the general ized superheating curve will 
be represen ted  by the lower port ions of the curves  in F ig .  4. 

Figure 4 shows superheating values T/T 0 as  a function of To, calculated f rom fluctuation theory [11, 
12], which are  sufficient to produce cr i t ica l  bubble formation ra tes  I equal to 103~ 101~ and 10 -1~ sec -1- 
cm-3 in molten A1 under s teady-s ta te  conditions. For  example, it is c lear  that a small  change in T /T  0 
!eads to an order -of -magni tude  change in I. This fact was used in the evaluation of s b. 

Thus the presence  of s teady-s ta te  bubbles in many ways facil i tates the t ransi t ion f rom surface to 
volume vaporizat ion as shown by calculations,  l imited by the scope of the assumptions,  of the interact ion 
between semi t ransparent  mater ia l s  and l a se r  radiat ion (with the thickness of the energy deposition zone 
much g rea t e r  than the average range of optical radiat ion in metals ,  10 ~ 10-4-10 -5 cm). However, for typ-  
ical  l a se r  values of l 0 for  metals ,  surface vaporizat ion should occur  f i rs t  followed by volume vaporizat ion 
as q~z inc reases  with the t ransi t ion at 5 "109, 3.109, and 107 W/cm 2 for  A1, Cu, and Pb, respect ively;  in 
this case,  the presence  of s teady-s ta te  bubbles obviously has little effect on the boundary between the p re -  
dominant vapor izat ion mechanisms .  
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